The Pawsey Supercomputing Centre


Genomics, bioinformatics and supercomputing for agricultural development

Computational: Bayesian inference is one of the most important methods for estimating phylogenetic trees in bioinformatics. Due to the potentially huge computational requirements, several parallel algorithms of Bayesian inference have been implemented to run on CPU-based clusters, multicore CPUs, or small clusters of CPUs. These phylogenetic programs utilize a Markov Chain Monte Carlo (MCMC) method for sampling tree and parameter space. We are interested in optimizing the MCMC approach for Bayesian phylogenetic analyses.

Biological: To increase food security initially in Uganda, Tanzania and Malawi, and Australia by reducing the spread of whitefly-borne cassava-virus pandemics. This will be achieved by carrying out research to understand factors that drive populations of the vector of these diseases, African cassava whitefly, to become super-abundant.

Comments are closed.